394 research outputs found

    Observation of new neutron-rich Mn, Fe, Co, Ni, and Cu isotopes in the vicinity of Ni 78

    Get PDF
    Neutron-rich nuclei in the vicinity of Ni78 were produced using a U238 beam at the RIKEN Radioactive Isotope Beam Factory. The particle-identification plot for the in-flight fission fragments highlights the first observation of eight new isotopes: Mn73, Fe76, Co77,78, Ni80,81,82, and Cu83. Although the β-decay half-lives of Co77 and Ni80 were recently reported by Xu [Phys. Rev. Lett. 113, 032505 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.032505 using data from the same experiment, the current work provides the first direct, quantitative evidence for the existence of these isotopes. The experimental production cross sections are reproduced in a satisfactory manner by theoretical predictions. An odd-even staggering of the cross sections was observed, and the effect appears to become more pronounced for the most exotic nuclei that were investigated. The staggering effect was interpreted as an increase of the neutron-evaporation probability for odd-N isotopes, owing to the decrease of the neutron-separation energy, Sn. The predicted cross section for Ni80 is significantly overestimated, which may be related to a weak binding of the neutron pair above the N=50 shell closure

    Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System

    Full text link
    The beta-ray angular correlations for the spin alignments of 8Li and 8B have been observed in order to test the conserved vector current (CVC) hypothesis. The alignment correlation terms were combined with the known beta-alpha-angular correlation terms to determine all the matrix elements contributing to the correlation terms. The weak magnetism term, 7.5\pm0.2, deduced from the beta-ray correlation terms was consistent with the CVC prediction 7.3\pm0.2, deduced from the analog-gamma-decay measurement based on the CVC hypothesis. However, there was no consistent CVC prediction for the second-forbidden term associated with the weak vector current. The experimental value for the second-forbidden term was 1.0 \pm 0.3, while the CVC prediction was 0.1 \pm 0.4 or 2.1 \pm 0.5.Comment: 31 pages, 12 figures, Accepted for publication in Phys. Rev.

    Quadrupole Moments of Neutron-Deficient 20,21^{20, 21}Na

    Get PDF
    The electric-quadrupole coupling constant of the ground states of the proton drip line nucleus 20^{20}Na(IπI^{\pi} = 2+^{+}, T1/2T_{1/2} = 447.9 ms) and the neutron-deficient nucleus 21^{21}Na(IπI^{\pi} = 3/2+^{+}, T1/2T_{1/2} = 22.49 s) in a hexagonal ZnO single crystal were precisely measured to be eqQ/h=690±12|eqQ/h| = 690 \pm 12 kHz and 939 ±\pm 14 kHz, respectively, using the multi-frequency β\beta-ray detecting nuclear magnetic resonance technique under presence of an electric-quadrupole interaction. A electric-quadrupole coupling constant of 27^{27}Na in the ZnO crystal was also measured to be eqQ/h=48.4±3.8|eqQ/h| = 48.4 \pm 3.8 kHz. The electric-quadrupole moments were extracted as Q(20|Q(^{20}Na)| = 10.3 ±\pm 0.8 ee fm2^2 and Q(21|Q(^{21}Na)| = 14.0 ±\pm 1.1 ee fm2^2, using the electric-coupling constant of 27^{27}Na and the known quadrupole moment of this nucleus as references. The present results are well explained by shell-model calculations in the full sdsd-shell model space.Comment: Accepted for publication in Physics Letters

    β decay of Cd129 and excited states in In129

    Get PDF
    published_or_final_versio

    Structure of 55Sc and development of the N=34 subshell closure

    Get PDF
    The low-lying structure of 55^{55}Sc has been investigated using in-beam γ\gamma-ray spectroscopy with the 9^{9}Be(56^{56}Ti,55^{55}Sc+γ\gamma)XX one-proton removal and 9^{9}Be(55^{55}Sc,55^{55}Sc+γ\gamma)XX inelastic-scattering reactions at the RIKEN Radioactive Isotope Beam Factory. Transitions with energies of 572(4), 695(5), 1539(10), 1730(20), 1854(27), 2091(19), 2452(26), and 3241(39) keV are reported, and a level scheme has been constructed using γγ\gamma\gamma coincidence relationships and γ\gamma-ray relative intensities. The results are compared to large-scale shell-model calculations in the sdsd-pfpf model space, which account for positive-parity states from proton-hole cross-shell excitations, and to it ab initio shell-model calculations from the in-medium similarity renormalization group that includes three-nucleon forces explicitly. The results of proton-removal reaction theory with the eikonal model approach were adopted to aid identification of positive-parity states in the level scheme; experimental counterparts of theoretical 1/21+1/2^{+}_{1} and 3/21+3/2^{+}_{1} states are suggested from measured decay patterns. The energy of the first 3/23/2^{-} state, which is sensitive to the neutron shell gap at the Fermi surface, was determined. The result indicates a rapid weakening of the N=34N=34 subshell closure in pfpf-shell nuclei at Z>20Z>20, even when only a single proton occupies the πf7/2\pi f_{7/2} orbital

    Monopole-driven shell evolution below the doubly magic nucleus Sn 132 explored with the long-lived isomer in Pd 126

    Get PDF
    A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in Pd126 and is proposed to have a spin and parity of 10+ with a maximally aligned configuration comprising two neutron holes in the 1h11/2 orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in Ag126. The smaller energy difference between the 10+ and 7- isomers in Pd126 than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h11/2 neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below Sn132 are discussed in terms of the central and tensor forces

    The N = 16 spherical shell closure in 24O

    Full text link
    The unbound excited states of the neutron drip-line isotope 24O have been investigated via the 24O(p,p')23O+n reaction in inverse kinematics at a beam energy of 62 MeV/nucleon. The decay energy spectrum of 24O* was reconstructed from the momenta of 23O and the neutron. The spin-parity of the first excited state, observed at Ex = 4.65 +/- 0.14 MeV, was determined to be Jpi = 2+ from the angular distribution of the cross section. Higher lying states were also observed. The quadrupole transition parameter beta2 of the 2+ state was deduced, for the first time, to be 0.15 +/- 0.04. The relatively high excitation energy and small beta2 value are indicative of the N = 16 shell closure in 24O.Comment: to be submitted to Physical Review Letter
    corecore